Х=2 + квадратный корень из 2-х

  • 08-08-2007 03:48
  • Просмотры: 5
Ответы ( 1 )
Серый Ломакин
+1
08-08-2007 11:32

Квадратный трехчлен ax2+bx+c   можно разложить на линейные множители по формуле:  ax2+bx+c=a (x-x1)(x-x2) ,  где  x1,  x2  — корни квадратного уравнения ax2+bx+c=0. Разложить квадратный трехчлен на линейные множители:Пример 1). 2x2-7x-15. Решение.  Найдем корни квадратного уравнения: 2x2-7x-15=0.a=2; b=-7; c=-15. Это общий случай для полного квадратного уравнения. Находим дискриминант D.D=b2-4ac=(-7)2-4∙2∙(-15)=49+120=169=132>0; 2 действительных корня.Применим формулу: ax2+bx+c=a (x-x1)(x-x2). 2x2-7x-15=2 (х+1,5)(х-5)=(2х+3)(х-5). Мы представили данный трехчлен 2x2-7x-15  в виде произведения двучленов 2х+3 и х-5.Ответ: 2x2-7x-15=(2х+3)(х-5). Пример 2). 3x2+2x-8 .Решение. Найдем корни квадратного уравнения:3x2+2x-8=0.a=3; b=2; c =-8.  Это частный случай для полного квадратного уравнения с четным вторым коэффициентом (b=2). Находим дискриминант D1. Применим формулу: ax2+bx+c=a (x-x1)(x-x2). Мы представили трехчлен 3x2+2x-8  в виде произведения двучленов х+2 и 3х-4.Ответ: 3x2+2x-8=(х+2)(3х-4). Пример 3). 5x2-3x-2. Решение.  Найдем корни квадратного уравнения:5x2-3x-2=0.a=5; b=-3; c=-2. Это частный случай для полного квадратного уравнения с выполненным условием: a+b+c=0 (5-3-2=0). В таких случаях первый корень всегда равен единице, авторой корень равен частному от деления свободного члена на первый коэффициент:Применим формулу: ax2+bx+c=a (x-x1)(x-x2). 5x2-3x-2=5 (х-1)(х+0,4)=(х-1)(5х+2). Мы представили трехчлен 5x2-3x-2  в виде произведения двучленов х-1 и 5х+2. Ответ: 5x2-3x-2=(х-1)(5х+2).Пример 4). 6x2+x-5. Решение.  Найдем корни квадратного уравнения:6x2+x-5=0.a=6; b=1; c=-5. Это частный случай для полного квадратного уравнения с выполненным условием: a-b+c=0 (6-1-5=0). В таких случаях первый корень всегда равен минусединице, а второй корень равен минус частному от деления свободного члена на первый коэффициент:Применим формулу: ax2+bx+c=a (x-x1)(x-x2). Мы представили трехчлен 6x2+x-5  в виде произведения двучленов х+1 и 6х-5.Ответ: 6x2+x-5=(х+1)(6х-5).Пример 5). x2-13x+12. Решение.  Найдем корни приведенного квадратного уравнения:x2-13x+12=0. Проверим, можно ли применить теорему Виета. Для этого найдем дискриминант и убедимся, что он является полным квадратом целого числа.a=1; b=-13; c=12. Находим дискриминант D.D=b2-4ac =132-4∙1∙12=169-48=121=112 .Применим теорему Виета: сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, а произведение корней должно быть равно свободному члену:x1+x2=13; x1∙x2=12. Очевидно, что x1=1; x2=12.Применим формулу: ax2+bx+c=a (x-x1)(x-x2). x2-13x+12=(х-1)(х-12).Ответ: x2-13x+12=(х-1)(х-12). Пример 6). x2-4x-6. Решение. Найдем корни приведенного квадратного уравнения:x2-4x-6=0.a=1; b=-4; c=-6. Второй коэффициент — четное число. Находим дискриминант D1.Дискриминант не является полным квадратом целого числа, поэтому, теорема Виета нам не поможет, и мы найдем корни по формулам для четного второго коэффициента:Применим формулу: ax2+bx+c=a (x-x1)(x-x2)   и запишем ответ: